Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067316

RESUMO

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Assuntos
Córtex Cerebral , Proteínas do Tecido Nervoso , Neurônios , Proteína Reelina , Animais , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Neurônios GABAérgicos/enzimologia , Hipocampo/embriologia , Hipocampo/enzimologia , Interneurônios/enzimologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Proteína Reelina/genética , Proteína Reelina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389674

RESUMO

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Assuntos
Astrócitos/fisiologia , Conexina 30/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Animais , Diferenciação Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Interneurônios/enzimologia , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Recombinação Genética , Tamoxifeno/farmacologia
3.
Brain Res ; 1764: 147467, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831408

RESUMO

Excitation-inhibition imbalance of GABAergic interneurons is predisposed to develop chronic temporal lobe epilepsy (TLE). We have previously shown that virtually every neuronal nitric oxide synthase (nNOS)-positive cell is a GABAergic inhibitory interneuron in the denate gyrus. The present study was designed to quantify the number of nNOS-containing hilar interneurons using stereology in pilocapine- and kainic acid (KA)-exposed transgenic adult mice that expressed GFP under the nNOS promoter. In addition, we studied the properties of miniature excitatory postsynaptic current (mEPSC) and paired-pulse response ratio (PPR) of evoked EPSC in nNOS interneurons using whole cell recording techniques. Results showed that there were fewer nNOS-immunoreactive interneurons of chronically epileptic animals. Importantly, patch-clamp recordings revealed reduction in mEPSC frequency, indicating diminished global excitatory input. In contrast, PPR of evoked EPSC following the granule cell layer stimulation was increased in epileptic animals suggesting reduced neurotransmitter release from granule cell input. In summary, we propose that impaired excitatory drive onto hippocampal nNOS interneurons may be implicated in the development of refractory epilepsy.


Assuntos
Epilepsia/enzimologia , Epilepsia/genética , Interneurônios/enzimologia , Óxido Nítrico Sintase Tipo I/genética , Animais , Doença Crônica , Convulsivantes , Epilepsia/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/genética , Regulação Enzimológica da Expressão Gênica , Hipocampo/fisiopatologia , Humanos , Ácido Caínico , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Pilocarpina , Ratos Sprague-Dawley
4.
EMBO J ; 39(18): e105759, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32744742

RESUMO

Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Interneurônios/enzimologia , Proteínas Musculares/metabolismo , Estresse Oxidativo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Musculares/genética
5.
Elife ; 82019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31657720

RESUMO

Parvalbumin-expressing (PV+) GABAergic interneurons mediate feedforward and feedback inhibition and have a key role in gamma oscillations and information processing. The importance of fast synaptic recruitment and action potential initiation and repolarization, and rapid synchronous GABA release by PV+ cells, is well established. In contrast, the functional significance of PV+ cell NMDA receptors (NMDARs), which generate relatively slow postsynaptic currents, is unclear. Underlining their potential importance, several studies implicate PV+ cell NMDAR disruption in impaired network function and circuit pathologies. Here, we show that dendritic NMDARs underlie supralinear integration of feedback excitation from local pyramidal neurons onto mouse CA1 PV+ cells. Furthermore, by incorporating NMDARs at feedback connections onto PV+ cells in spiking networks, we show that these receptors enable cooperative recruitment of PV+ interneurons, strengthening and stabilising principal cell assemblies. Failure of this phenomenon provides a parsimonious explanation for cognitive and sensory gating deficits in pathologies with impaired PV+ NMDAR signalling.


Assuntos
Dendritos/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Dendritos/enzimologia , Neurônios GABAérgicos/enzimologia , Interneurônios/enzimologia , Camundongos
6.
J Psychiatr Res ; 115: 21-28, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31082653

RESUMO

Na+, K+-ATPase is an essential membrane transporter. In the brain, the α3 isoform of Na+, K+-ATPase is vital for neuronal function. The enzyme and its regulators, endogenous cardiac steroids (ECS), were implicated in neuropsychiatric disorders. GABAergic neurotransmission was also studied extensively in diseases such as schizophrenia and bipolar disorder (BD). Post mortem brain samples from subjects with depression, schizophrenia or BD and non-psychiatric controls were provided by the Stanley Medical Research Institute. ECS levels were determined by ELISA. Expression levels of the three Na+, K+-ATPase-α isoforms, α1, α2 and α3, were determined by Western blot analysis. The α3 levels in GABAergic neurons in different regions of the brain were quantified by fluorescence immunohistochemistry. The results show that Na+, K+ -ATPase α3 isoform levels were lower in GABAergic neurons in the frontal cortex in BD and schizophrenia as compared with the controls (n = 15 subjects per group). A study on a 'mini-cohort' (n = 3 subjects per group) showed that the α3 isoform levels were also lower in GABAergic neurons in the hippocampus, but not amygdala, of bipolar and schizophrenic subjects. In the temporal cortex, higher Na+, K+ -ATPase α3 protein levels were found in the three psychiatric groups. No significant differences in ECS levels were found in this brain area. This is the first report on the distribution of α3 in specific neurons in the human brain in association with mental illness. These results strengthen the hypothesis for the involvement of Na+, K+ -ATPase in neuropsychiatric diseases.


Assuntos
Transtorno Bipolar/enzimologia , Transtorno Depressivo/enzimologia , Neurônios GABAérgicos/enzimologia , Interneurônios/enzimologia , Córtex Pré-Frontal/enzimologia , Esquizofrenia/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Bancos de Tecidos , Adulto , Tonsila do Cerebelo/enzimologia , Hipocampo/enzimologia , Humanos , Córtex Pré-Frontal/patologia , Isoformas de Proteínas , Lobo Temporal/enzimologia
7.
Eur J Neurosci ; 50(4): 2653-2662, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30941837

RESUMO

The striatum mediates a broad range of cognitive and motor functions. Within the striatum, recently discovered tyrosine hydroxylase expressing interneurons (THINs) provide a source of intrastriatal synaptic connectivity that is critical for regulating striatal activity, yet the role of THIN's in behavior remains unknown. Given the important role of the striatum in reward-based behaviors, we investigated whether loss of striatal THINs would impact instrumental behavior in mice. We selectively ablated striatal THINs in TH-Cre mice using chemogenetic techniques, and then tested THIN-lesioned or control mice on three reward-based striatal-dependent instrumental tests: (a) progressive ratio test; (b) choice test following selective-satiety induced outcome devaluation; (c) outcome reinstatement test. Both striatal-THIN-lesioned and control mice acquired an instrumental response for flavored food pellets, and their behavior did not differ in the progressive ratio test, suggesting intact effort to obtain rewards. However, striatal THIN lesions markedly impaired choice performance following selective-satiety induced outcome devaluation. Unlike control mice, THIN-lesioned mice did not adjust their choice of actions following a change in outcome value. In the outcome reinstatement test THIN-lesioned and control mice showed response invigoration by outcome presentation, suggesting the incentive properties of outcomes were not disrupted by THIN lesions. Overall, we found that striatal THIN lesions selectively impaired goal-directed behavior, while preserving motoric and appetitive behaviors. These findings are the first to describe a function of striatal THINs in reward-based behavior, and further illustrate the important role for intrastriatal interneuronal connectivity in behavioral functions ascribed to the striatum more generally.


Assuntos
Condicionamento Operante , Interneurônios/patologia , Neostriado/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Comportamento Apetitivo , Comportamento de Escolha , Extinção Psicológica , Objetivos , Interneurônios/enzimologia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Neostriado/citologia , Neostriado/enzimologia , Desempenho Psicomotor , Esquema de Reforço , Recompensa
8.
Transl Psychiatry ; 8(1): 271, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531788

RESUMO

Experience of traumatic events in childhood is linked to an elevated risk of developing psychiatric disorders in adulthood. The neurobiological mechanisms underlying this phenomenon are not fully understood. The limbic system, particularly the hippocampus, is significantly impacted by childhood trauma. In particular, it has been hypothesised that childhood stress may impact adult hippocampal neurogenesis (AHN) and related behaviours, conferring increased risk for later mental illness. Stress in utero can lead to impaired hippocampal synaptic plasticity, and stress in the first 2-3 weeks of life reduces AHN in animal models. Less is known about the effects of stress in the post-weaning, pre-pubertal phase, a developmental time-point more akin to human childhood. Therefore, we investigated persistent effects of pre-pubertal stress (PPS) on functional and molecular aspects of the hippocampus. AHN was altered following PPS in male rats only. Specifically males showed reduced production of new neurons following PPS, but increased survival in the ventral dentate gyrus. In adult males, but not females, pattern separation and trace fear conditioning, behaviours that rely heavily on AHN, were also impaired after PPS. PPS also increased the expression of parvalbumin-positive GABAergic interneurons in the ventral dentate gyrus and increased glutamic acid decarboxylase 67 expression in the ventral hilus, in males only. Our results demonstrate the lasting effects of PPS on the hippocampus in a sex- and time-dependent manner, provide a potential mechanistic link between PPS and later behavioural impairments, and highlight sex differences in vulnerability to neuropsychiatric conditions after early-life stress.


Assuntos
Comportamento Animal , Hipocampo/fisiopatologia , Neurogênese , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Animais , Condicionamento Clássico , Discriminação Psicológica , Medo , Feminino , Neurônios GABAérgicos/enzimologia , Glutamato Descarboxilase/metabolismo , Interneurônios/enzimologia , Masculino , Reconhecimento Fisiológico de Modelo , Puberdade , Ratos
9.
Sci Rep ; 8(1): 2458, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410515

RESUMO

Protein kinase A (PKA) has been shown to play a role in a plethora of cellular processes ranging from development to memory formation. Its activity is mediated by the catalytic subunits whereby many species express several paralogs. Drosophila encodes three catalytic subunits (PKA-C1-3) and whereas PKA-C1 has been well studied, the functions of the other two subunits were unknown. PKA-C3 is the orthologue of mammalian PRKX/Pkare and they are structurally more closely related to each other than to other catalytic subunits within their species. PRKX is expressed in the nervous system in mice but its function is also unknown. We now show that the loss of PKA-C3 in Drosophila causes copulation defects, though the flies are active and show no defects in other courtship behaviours. This phenotype is specifically due to the loss of PKA-C3 because PKA-C1 cannot replace PKA-C3. PKA-C3 is expressed in two pairs of interneurons that send projections to the ventro-lateral protocerebrum and the mushroom bodies and that synapse onto motor neurons in the ventral nerve cord. Rescue experiments show that expression of PKA-C3 in these interneurons is sufficient for copulation, suggesting a role in relaying information from the sensory system to motor neurons to initiate copulation.


Assuntos
Copulação , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Interneurônios/enzimologia , Sinapses/enzimologia , Animais , Cérebro/enzimologia , Cérebro/fisiopatologia , Corte , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica , Teste de Complementação Genética , Interneurônios/patologia , Camundongos , Neurônios Motores/enzimologia , Neurônios Motores/patologia , Corpos Pedunculados/enzimologia , Corpos Pedunculados/fisiopatologia , Proteínas Serina-Treonina Quinases , Reprodução , Sinapses/patologia , Transmissão Sináptica
10.
Cereb Cortex ; 27(12): 5696-5714, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117290

RESUMO

The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Interneurônios/enzimologia , Células-Tronco Neurais/enzimologia , Área Pré-Óptica/embriologia , Animais , Animais Recém-Nascidos , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Metilação de DNA , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/enzimologia , Interneurônios/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Crescimento Neuronal/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/enzimologia , Técnicas de Cultura de Tecidos , Transcriptoma , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
11.
Neuropharmacology ; 126: 151-157, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887183

RESUMO

The medial shell region of the nucleus accumbens (msNAc) is a key center for the regulation of goal-directed behavior and is likely to be dysfunctional in neuropsychiatric disorders such as addiction, depression and schizophrenia. Nitric oxide (NO)-producing interneurons in the msNAc are potently modulated by dopamine (DA) and may play an important role in synaptic integration in msNAc networks. In this study, neuronal NO synthase (nNOS) activity was measured in anesthetized rats using amperometric microsensors implanted into the msNAc or via histochemical techniques. In amperometric studies, NO oxidation current was recorded prior to and during electrical stimulation of the ipsilateral fimbria. Fimbria stimulation elicited a frequency and intensity-dependent increase in msNAc NO efflux which was attenuated by systemic administration of the nNOS inhibitor NG-propyl-l-arginine. Parallel studies using NADPH-diaphorase histochemistry to assay nNOS activity produced highly complementary outcomes. Moreover, systemic administration of either a DA D1 receptor agonist or a DA D2 receptor antagonist potentiated nNOS activity in the msNAc elicited by fimbria stimulation. These observations demonstrate for the first time that NO synthesis in nNOS expressing interneurons in the msNAc is facilitated by robust activation of hippocampal afferents in a manner that is differentially modulated by DA D1 and D2 receptor activation.


Assuntos
Fórnice/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Accumbens/enzimologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Estimulação Elétrica , Interneurônios/enzimologia , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas
12.
Neurosci Lett ; 649: 48-54, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28400125

RESUMO

Dysfunction of inhibitory GABAergic interneurons is considered a major pathophysiological feature of various neurodevelopmental and neuropsychiatric disorders. The variants of SHANK3 gene, encoding a core scaffold protein of the excitatory postsynapse, have been associated with numerous brain disorders. It has been suggested that abnormalities of GABAergic interneurons could contribute to the SHANK3-related disorders, but the limitation of these studies is that they used mainly Shank3 knock-out mice. Notably, Shank3-overexpressing transgenic mice, modeling human hyperkinetic disorders, also show reduced inhibitory synaptic transmission, abnormal electroencephalography, and spontaneous seizures. However, it has not been investigated whether these phenotypes of Shank3 transgenic mice are associated with GABAergic interneuron dysfunction, or solely due to the cell-autonomous postsynaptic changes of principal neurons. To address this issue, we investigated the densities of parvalbumin- and somatostatin-positive interneurons, and the mRNA and protein levels of GAD65/67 GABA-synthesizing enzymes in the medial prefrontal cortex, striatum, and hippocampus of adult Shank3 transgenic mice. We found no significant difference in the measurements performed on wild-type versus Shank3 transgenic mice, except for the decreased GAD65 or GAD67 mRNAs in these brain regions. Interestingly, only GAD65 mRNA was decreased in the hippocampus, but not mPFC and striatum, of juvenile Shank3 transgenic mice which, unlike the adult mice, did not show behavioral hyperactivity. Together, our results suggest age-dependent decrease of GAD65/67 mRNAs but normal densities of certain GABAergic interneurons in the Shank3 transgenic mice.


Assuntos
Transtorno Bipolar/enzimologia , Encéfalo/enzimologia , Neurônios GABAérgicos/enzimologia , Glutamato Descarboxilase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Corpo Estriado/enzimologia , Modelos Animais de Doenças , Hipocampo/enzimologia , Interneurônios/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/enzimologia , RNA Mensageiro/metabolismo , Somatostatina/metabolismo
13.
Brain Behav ; 7(2): e00534, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28239515

RESUMO

INTRODUCTION: Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. METHODS: In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days of mild restrain stress. The analyses were performed in GIN mice, a strain that displays EGFP-labeled interneurons. RESULTS: We observed a significant decrease in the dendritic arborization of interneurons in the CA1 region, which did not occur in those in CA3. We found neither changes in dendritic spine density in these regions nor alterations in the number of EGFP-positive interneurons. Nevertheless, the expression of glutamic acid decarboxylase 67 was reduced in different layers of CA1 and CA3 regions of the hippocampus. No significant changes were found in the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or synaptophysin. CONCLUSIONS: Chronic stress reduces the interneuronal dendritic arborization in CA1 region of the hippocampus but not in CA3.


Assuntos
Região CA1 Hipocampal , Região CA3 Hipocampal , Espinhas Dendríticas/fisiologia , Glutamato Descarboxilase/metabolismo , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia , Estresse Psicológico , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/fisiopatologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/enzimologia , Região CA3 Hipocampal/fisiopatologia , Contagem de Células , Espinhas Dendríticas/enzimologia , Interneurônios/citologia , Interneurônios/enzimologia , Masculino , Camundongos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Estresse Psicológico/enzimologia , Estresse Psicológico/fisiopatologia
14.
Naunyn Schmiedebergs Arch Pharmacol ; 388(7): 695-708, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25920933

RESUMO

Bladder afferent outflow, linked to sensation, plays a critical role in bladder pathology: abnormal outflow results in altered sensation, leading to increased voiding frequency, urge and often incontinence. ß3-adrenoceptor agonists have been suggested to be beneficial in treating these symptoms. However, the absence of a significant sympathetic innervation of the detrusor and only a modest relaxation of bladder muscle by ß3 agonists has questioned the therapeutic site of action of ß3 agonists in the bladder. The present study was done to explore the possibility that ß3-adrenoceptors might be located in the pelvic plexus. Using the rat, where the pelvic plexus is located primarily within a single ganglion, the major pelvic ganglion (MPG), immuno-histochemical approaches were used to identify structures expressing ß3-adrenoceptor immuno-reactivity (ß3AR-IR). The only structures found to express ß3AR-IR were small-diameter tyrosine hydroxylase and vesicular mono-amine transporter immuno-reactive (TH-IR and vmat-IR) neurones. These neurones, found in clusters or singly on the periphery of the ganglion, or dispersed in smaller clumps throughout the MPG, are similar to the small intensely fluorescent (SIF) cells described previously. Not all small cells expressed ß3AR-IR. A population of the small cells were also immuno-reactive to the type 3 muscarinic receptor (M3R-IR) and the P2X3 purinergic receptor (P2X3-IR). Clumps of small cells were associated with calcitonin gene-related peptide immuno-reactive (CGRP-IR) nerve fibres (putative sensory fibres) and a small number were contacted by putative cholinergic nerves expressing immuno-reactivity to vesicular acetylcholine transporter (vacht-IR). These observations are consistent with the idea that small cells are interneurons and one of the components making up complex neural circuits within the MPG. The precise physiological role of these neural elements in the MPG is unknown. However, as one therapeutic action of ß3-adrenoceptor agonists is to modulate sensation, it is possible that these neural circuits may be involved in the regulation of afferent outflow and sensation.


Assuntos
Plexo Hipogástrico/metabolismo , Receptor Muscarínico M3/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Bexiga Urinária/inervação , Animais , Anticorpos Monoclonais/farmacologia , Plexo Hipogástrico/enzimologia , Plexo Hipogástrico/imunologia , Imuno-Histoquímica , Interneurônios/enzimologia , Interneurônios/imunologia , Interneurônios/metabolismo , Masculino , Ratos Wistar , Receptor Muscarínico M3/imunologia , Receptores Adrenérgicos beta 3/imunologia , Tirosina 3-Mono-Oxigenase/imunologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/imunologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
15.
J Neurosci ; 35(6): 2372-83, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673832

RESUMO

Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.


Assuntos
Ansiedade/psicologia , Quinase 5 Dependente de Ciclina/genética , Inibição Psicológica , Interneurônios/metabolismo , Transtornos da Memória/psicologia , Parvalbuminas/metabolismo , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Interneurônios/enzimologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
16.
Neuroscience ; 280: 99-110, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25230286

RESUMO

Previously we have demonstrated that intraventricular injection of 6-hydroxydopamine (6-OHDA) results in increased proliferation and de-differentiation of rat cortical astrocytes into progenitor-like cells 4 days after lesion (Wachter et al., 2010). To find out if these cells express tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine synthesis pathway, we performed immunohistochemistry in the rat cortex following intraventricular injection of 6-OHDA. Four days after injection we demonstrated a strong emergence of TH-positive (TH(+)) somata in the cortices of 6-OHDA-lesioned animals. The number of TH(+) cells in the cortex of 6-OHDA-lesioned animals was 15 times higher than in sham-operated animals, where virtually no TH(+) somata occurred. Combining TH immunohistochemistry with classical Nissl stain yielded complete congruency, and ∼45% of the TH(+) cells co-expressed calretinin, which indicates an interneuron affiliation. There was no co-staining of TH with other interneuron markers or with glial markers such as glial fibrillary acidic protein (GFAP) or the neural stem/progenitor marker Nestin, nor could we find co-localization with the proliferation marker Ki67. However, we found a co-localization of TH with glial progenitor cell markers (Sox2 and S100ß) and with polysialylated-neural cell adhesion molecule (PSA-NCAM), which has been shown to be expressed in immature, but not recently generated cortical neurons. Taken together, this study seems to confirm our previous findings with respect to a 6-OHDA-induced expression of neuronal precursor markers in cells of the rat cortex, although the TH(+) cells found in this study are not identical with the potentially de-differentiated astrocytes described recently (Wachter et al., 2010). The detection of cortical cells expressing the catecholaminergic key enzyme TH might indicate a possible compensatory role of these cells in a dopamine-(DA)-depleted system. Future studies are needed to determine whether the TH(+) cells are capable of DA synthesis to confirm this hypothesis.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Oxidopamina/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Calbindina 2/metabolismo , Contagem de Células , Córtex Cerebral/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Corpo Estriado/patologia , Imuno-Histoquímica , Injeções Intraventriculares , Interneurônios/efeitos dos fármacos , Interneurônios/enzimologia , Interneurônios/patologia , Masculino , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/enzimologia , Neuroglia/patologia , Ratos Sprague-Dawley , Subunidade beta da Proteína Ligante de Cálcio S100 , Fatores de Transcrição SOXB1/metabolismo , Ácidos Siálicos/metabolismo
17.
J Chem Neuroanat ; 61-62: 51-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25058170

RESUMO

As γ-aminobutyric acid (GABA) is synthesized by two isoforms of glutamic acid decarboxylase (GAD), namely, GAD65 and GAD67, immunohistochemically targeting either isoform of GAD is theoretically useful for identifying GABAergic cell bodies. In practice, targeting GAD67 remains to be a popular choice. However, identifying GABAergic cell bodies with GAD67 immunoreactivity in the hippocampal dentate gyrus, especially in the hilus, is not without pitfalls. In the present study, we compared the characteristics of GAD65 immunoreactivity to GAD67 immunoreactivity in the rat dentate gyrus and examined perikaryal expression of GAD65 in four neurochemically prevalent subgroups of interneurons in the hilus. Experiments were done in normal adult Sprague-Dawley rats and GAD67-GFP knock-in mice. Horizontal hippocampal slices cut from the ventral portion of hippocampi were immunofluorescently stained and scanned using a confocal microscope. Immunoreactivity for both GAD67 and GAD65 was visible throughout the dentate gyrus. Perikaryal GAD67 immunoreactivity was denser but variable in terms of distribution pattern and intensity among cells whereas perikaryal GAD65 immunoreactivity displayed similar distribution pattern and staining intensity. Among different layers of the dentate gyrus, GAD67 immunoreactivity was densest in the hilus despite GAD65 immunoreactivity being more intense in the granule cell layer. Co-localization experiments showed that GAD65, but not GAD67, was expressed in all hilar calretinin (CR)-, neuronal nitric oxide synthase (nNOS)-, parvalbumin (PV)- or somatostatin (SOM)-positive somata. Labeling CR, nNOS, PV, and SOM in sections obtained from GAD67-GFP knock-in mice revealed that a large portion of SOM-positive cells had weak GFP expression. In addition, double labeling of GAD65/GABA and GAD67/GABA showed that nearly all of GABA-immunoreactive cells had perikaryal GAD65 expression whereas more than one-tenth of GABA-immunoreactive cells lacked perikaryal GAD67 immunoreactivity. Inhibition of axonal transport with colchicine dramatically improved perikaryal GAD65 immunoreactivity in GABAergic cells without significant augmentation to be seen in granule cells. Double labeling GAD65 and GAD67 in the sections obtained from colchicine-pretreated animals confirmed that a portion of GAD65-immunoreactive cells had weak or even no GAD67 immunoreactivity. We conclude that for confocal imaging, immunofluorescently labeling GAD65 for identifying GABAergic somata in the hilus of the dentate gyrus has advantages over labeling GAD67 in terms of easier recognition of perikaryal labeling and more consistent expression in GABAergic somata. Inhibition of axonal transport with colchicine further improves perikaryal GAD65 labeling, making GABAergic cells more distinguishable.


Assuntos
Giro Denteado/citologia , Neurônios GABAérgicos/citologia , Glutamato Descarboxilase/análise , Animais , Giro Denteado/enzimologia , Imunofluorescência/métodos , Neurônios GABAérgicos/enzimologia , Interneurônios/citologia , Interneurônios/enzimologia , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley
18.
J Chem Neuroanat ; 59-60: 8-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24810015

RESUMO

The enzyme 5α-reductase catalyzes the transformation of progesterone, testosterone, and deoxycorticosterone into 5α-reduced metabolites, which are recognized as neurosteroids in the brain with variable potential neuroactivity. Two isoforms of 5α-reductase were identified in rodents, and, of these, 5α-reductase type 1 (5α-R1) is abundantly expressed in the brain. To understand the multiple influences of neurosteroids in the central nervous system, we need to know their region-specific synthesis. The present study reports the detailed localization of 5α-R1 in the adult rat cerebellum. The occurrence of 5α-R1 was detected by reverse transcription-polymerase chain reaction. The enzyme activity was also detected by thin layer chromatography. Immunocytochemistry showed 5α-R1 immunoreactive cells in all cerebellar layers. Multiple immunolabeling revealed that 5α-R1 was mainly localized in glia, such as astrocytes and oligodendrocytes. The most intense immunoreactivity for 5α-R1 was found in Bergmann glia, and the processes of these glia were associated with dendrites of both Purkinje cells and interneurons in the molecular layer. The 5α-R1 in the cerebellum was expressed consistently throughout different ages and sexes, in both gonadectomized and hypophysectomized rats. Thus, 5α-R1 may contribute to the formation and maintenance of the cerebellar neurons through 5α-reduced metabolites, which are synthesized through a complex interaction between neurons and glia.


Assuntos
Química Encefálica , Cerebelo/enzimologia , Colestenona 5 alfa-Redutase/biossíntese , Animais , Colestenona 5 alfa-Redutase/análise , Feminino , Imuno-Histoquímica , Interneurônios/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/enzimologia , Células de Purkinje/enzimologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Neurochem Int ; 68: 10-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480781

RESUMO

We investigated localization of Phospholipase C beta (PLCß1 and PLCß4) in laminaes of dorsal hippocampus and different subtypes of hippocampal interneurons in normal Kunming mouse, and their progressive changes during pilocarpine induced status epilepticus (SE) by quantitative immunohistochemistry and real time PCR. PLCß1 was observed in the pyramidal layer of CA1-3 area, hilus of the dentate gyrus, whereas PLCß4 was mainly expressed in calcium binding protein positive interneurons, i.e. calbindin, calretinin, parvalbumin positive interneurons in the strata oriens, radiatum of the CA area and hilus of the dentate gyrus. During pilocarpine induced SE, a temporary down-regulation of PLCß4 in the interneurons of CA area at SE 30min, and a progressive reduction of PLCß1/PLCß4 in dentate hilar cells were demonstrated. These findings confirm and extend the regional specific distribution of PLCß1 and PLCß4 immunoreactivity in mouse hippocampus, and suggest that PLCß1 and PLCß4 may play an important role in maintenance of the status epilepticus.


Assuntos
Hipocampo/efeitos dos fármacos , Interneurônios/enzimologia , Fosfolipase C beta/metabolismo , Pilocarpina/farmacologia , Estado Epiléptico/enzimologia , Animais , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Feminino , Hipocampo/enzimologia , Imuno-Histoquímica/métodos , Camundongos , Estado Epiléptico/induzido quimicamente
20.
Neurol Sci ; 35(8): 1181-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24563117

RESUMO

This study examined the response of interneurons in the medial prefrontal cortex (mPFC) to 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on glutamate decarboxylase 67 (GAD67)-positive neurons in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc). Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT dose-dependently inhibited the firing rate of the interneurons at all doses tested in sham-operated rats. In 6-OHDA-lesioned rats, 8-OH-DPAT, at the same doses, also inhibited the firing rate of the interneurons, whereas the inhibition was significant only at a high cumulative dose. Furthermore, injection of 8-OH-DPAT into the mPFC inhibited the interneurons in sham-operated rats, while having no effect on firing rate of the interneurons in 6-OHDA-lesioned rats. In contrast to sham-operated rats, SNc lesion reduced the expression of 5-HT1A receptor on GAD67-positive neurons in the prelimbic cortex, a sub-region of the mPFC. Our results indicate that degeneration of the nigrostriatal pathway leads to decreased response of mPFC interneurons to 5-HT1A receptor activation, which attributes to the down-regulation of 5-HT1A receptor expression in these interneurons.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Interneurônios/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo , Glutamato Descarboxilase/análise , Interneurônios/enzimologia , Interneurônios/fisiologia , Masculino , Degeneração Neural , Oxidopamina/toxicidade , Piperazinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/biossíntese , Receptor 5-HT1A de Serotonina/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...